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Summary 
Sound decay in rooms is usually defined by absorption and scattering properties of surfaces. In 
some cases sound decay calculation is a rather simple task. But in most problems we deal with 
nonuniformly absorption distribution on the surfaces, nondiffuse reflections, nonergodic rooms 
and other obstacles preventing the exact analytical solution. Simulation procedures can help us in 
practical cases when we investigate a certain room. There are some different models for 
calculation of diffuse sound field, whereas specular reflections can be taken into account in a 
simple way. In the present paper we propose analytical model for sound decay calculation in a 
rectangular room. In this model sound field in the room is separated into two components. First 
component describing specular reflected sound field is given by a sum of specular reflections. 
Second component describing diffusely reflected sound field is a solution of a differential 
equation. Without diffuse reflections sound decay in the room with nonuniformly absorption 
distribution is always nonexponential. If the diffuse reflection coefficient is sufficient then sound 
decay is exponential and close to Sabine’s law. Separation of sound field into secular reflected and 
diffusely reflected components permits to define what of them is dominant. Conditions under 
which sound decay is mainly described by diffuse reflections can be estimated from the model as 
well. 

PACS no. 43.55.Br, 43.55.Dt 

1. Introduction1

The reverberation time is generally recognized as 
the most important acoustical attribute for any kind 
of rooms. It characterizes a sound decay rate on 
condition that a decay curve is assumed to be close 
to exponent. Many formulas have been proposed 
for predicting the reverberation times [1-3].  
A necessary condition of existence for the 
reverberation time is that the sound field in the 
enclosure is diffuse and sound decay is close to 
exponent. For that the enclosure must be 
sufficiently randomizing [4]. Randomization of the 
sound field can be provided by the enclosure shape 
or by the roughness of its surfaces. In the 
enclosure with these properties any initial sound 
field becomes diffuse or homogeneous with time. 
But this condition is not sufficient for the 
enclosures with a high nonuniform distribution of 
absorption. Significant deviations from a pure 
exponential decay law take place in strongly 
                                                     

1(c) European Acoustics Association 

         

chaotic rooms with absorption localized in certain 
region of the rooms [5]. 
An extreme case is a nonrandomizing enclosure 
with nonuniform distribution of absorption without 
any scattering obstacles and surfaces. Both 
properties can result in great deviation of sound 
decay from the exponential law. For example [6] 
sound energy in a rectangular room with an 
absorbing ceiling is proportional to 1/t. Taking into 
account scattering properties of enclosure walls 
permits to achieve more randomized sound field. 
In order to describe scattering by the surfaces a 
diffuse reflection coefficient is usually introduced.  
It is convenient to separate sound energy into two 
components [4,6]. First of them is defined by 
specular reflected sound energy. Second one is 
defined by scattered energy. This approach is 
developed for case when both components are 
defined by diffuse fields and decay in accordance 
with exponential law [7]. But in nonrandomizing 
enclosures nonexponential decays of specular 
energy have to be taken into consideration. 
In this work we consider a nonrandomizing 
enclosure by the example of a rectangular 
parallelepiped with specular and diffuse reflecting 
surfaces.   First  of  all  we  find  a  decay  law   for 

(c) European Acoustics Association, ISBN: 978-84-694-1520-7, ISSN: 221-3767 1935



FORUM ACUSTICUM 2011 Kanev: Sound decay in a rectangular room 
27. June - 1. July, Aalborg                                                                        with specular and diffuse reflecting surfaces 

energy of specular reflection and then investigate 
the influence of sound scattering by surfaces on 
decay of total sound energy. 

2. Specular reflecting walls 

Let consider a rectangular parallelepiped enclosure 
with dimensions L , D , H . The beginning of the 
coordinate system is placed in the enclosure 
corner and the axes are directed along the 
enclosure edges as shown in Figure 1a. Six walls 
of the enclosure are numerated in the following 
way: a number of the wall lying in the plane 

Hz  is 1; a number of the wall lying in the 
plane 0z  is 2; numbers of the walls lying in the 
planes Lx , 0x , Dy , 0y  are 3, 4, 5, 6 
respectively. Absorbing properties of the 
enclosure walls are characterized by specular 
reflection coefficients i , where i  is the wall 
number. We assume that the walls are smooth and 
do not diffuse sound. So the absorption 
coefficients of the walls are equal to ii 1 .
Initial sound field in the enclosure is diffuse. In 
accordance with Kuttruff [3] it means that at any 
point in the enclosure sound waves are incident 
from all directions with equal intensity and 
random phase. So at the moment 0t  the sound 
field is a superposition of incoherent plane waves 
with equal amplitudes uniformly distributed on the 
directional angles  and . Note that the plane 
waves can be replaced by sound rays or sound 
particles [4,5] but the following computations are 
correct for them as well. Sound energy in the 
enclosure is defined as sum intensity of all waves 
(or sound particles) and given by 

2

0

2

2

2 cos),,(
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where ),,(tA  is the amplitude of the wave 
propagating in direction determined by the angles 

 and .
In order to investigate the sound decay process we 
apply the image room method [3]. The enclosure 
is continuously mirrored as whole at its walls. 
Images of the original enclosure fill whole space 
without leaving uncovered regions and without 
any overlap. The pattern of the image enclosures 
in the plane xz  is shown in Figure 1b and 
continues in a similar manner in the y -direction 
perpendicular to the drawing plane. Initial sound 
field is mirrored in entire space as well. Finally, 
we obtain diffuse sound field in all space with the 
same properties as initial sound field in the 
original enclosure has. We suppose that an initial 
condition for the mirrored sound field is  

1),,0(A ,     (2) 

In the proposed model we need no longer consider 
reflection of sound from the walls. Each reflection 
is substituted by the intersection of the planes 
consisting of the wall images by the wave 
traveling towards the original enclosure. The 
distance between the neighbour image planes 
perpendicular to the axis x  ( y  or z ) is equal L
( D  or H ). After any intersection the wave loses a 
fraction of its intensity corresponding to the wall 
absorption coefficient.  
Sound energy in the enclosure at the moment t  is 

Figure 1. A rectangular enclosure (a) and mirrored enclosures in the plane xz (b). 

 a)
 b)
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defined by the waves passing distance ct  towards 
the enclosure, where c  is speed of sound. In order 
to find intensity reduction of the wave due to walls 
absorption we have to count the intersections with 
the image planes. For the sake of simplicity we 
calculate sound energy at the point )0,0,0( , i.e. at 
the enclosure corner. The wave with the 
directional angles  and  travels distance 

sinct  along the axis z  in time t . Along the 
axes x  and y  it travels distances coscosct
and sincosct  respectively. The number of 
reflections in  from the wall with number i  in 
time t  is equal 

sin
2

),,(2,1 H
cttn ,    (3) 

coscos
2
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2

),,(6,5 D
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Intensity reduction of the wave due to absorption 
on the walls is equal  
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Total sound energy can be found from equation 1 
by integration by the angles  and 
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Equation 6 defines the energy decay law in the 
enclosure. If all walls are absolutely reflecting and 
their reflection coefficients are equal to 1i
then sound energy in the enclosure remains 
constant. 
Let us consider the enclosure with one absorbing 
wall. Suppose that 10 1  and 

165432 . Equation 6 gives  

tct
HtEs

1~
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2)(

1
,

1lnc
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Sound decay is inversely proportional to time. 
Equation 7 coincides with Kuttruff’s result [3] for 
the similar enclosure. 
Suppose that two nonparallel walls can absorb 
sound waves. If the reflection coefficients of the 
walls are equal 1,0 31  and 

16542  than from equation 6 we 
can find

22
31

1~
)(lnln
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tct
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for 1lncHt  and 3lncLt .

Sound decay is inversely proportional to squared 
time. Sound energy decays faster then in the 
enclosure with one absorbing wall. 
In general case all walls can absorb sound waves. 
For 10 i , 6...1i  we can find from 
Equation 6 for )ln( 21cHt ,

)ln( 43cLt  and )ln( 65cDt

ldh
hedele

t
tE
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where 65ln
2D
cd , 43ln

2L
cl ,

21ln
2H
ch .

We can see from equation 9 that sound decay is 
not exponential under any absorption distribution 
on the walls. 
Physical sense of l , d  and h  is that they 
characterize exponential decay rates of sound 
propagating along the axes x , y  and z
respectively. They depend on both the distance 
between parallel walls and the absorption 
coefficient of these walls. The sum in equation 9 
can be separated into three summands each of 
them describes sound energy decay along one of 
the axis. Sound propagating along the axis with 
maximal exponential decay rate is absorbed faster 
then along two other axes. Minimum exponential 
decay rate determines sound decay at t . If 

hdl ,  then the slowest sound decay is along the 
axis x  and the sound energy is found from 
equation 9 at t

2
2)(
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e
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Comparing equations 7, 8 and 10 we can see that 
the sound decay becomes faster with increasing of 
number of absorbing walls.  
As an example let us consider a rectangular 
enclosure with maximal dimension H  and other 
dimensions HD 7.0 , HL 5.0  and introduce 
dimensionless time Hct 2  for three different 
distributions of the sound absorption on its walls. 
In first case all absorption is concentrated on one 
wall with the number 1i . The absorption 
coefficient of this wall is equal 7.0 . In second 
case the absorption is distributed on two 
nonparallel walls with the numbers 1i  and 5i .
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Their absorption coefficient is 29.0 . In third 
case the absorption is distributed on three 
nonparallel walls which absorption coefficients 
are equal 16.0 . In all cases the mean values 

 of the absorption coefficient are the same and 
equal 08.0 . Classical Sabine’s law of sound 
energy decay is given by 

V
ScttE

4
exp)( ,              (11) 

where V is the enclosure volume and S  is the area 
of all walls. Decay curves for there absorption 
distributions on the walls calculated by equation 6 
and Sabine’s decay curve calculated by equation 
11 are shown in Figure 2. As we can see the decay 
curves for nonuniform absorption differ strongly 
from the exponential Sabine’s law. Whereas the 
decay curve for uniform absorption is closest to 
the exponent but does not coincide with it at 

1.

3. Scattering walls 

In order to take into account scattering properties 
of the wall we introduce a diffuse reflection 
coefficient  which is defined as the ratio of 
scattered sound energy to incident sound energy. It 
is connected with the absorption coefficient  and 
the specular reflection coefficient  by 

1 .                (12) 

Let us separate sound energy in the enclosure into 
two components. First component is specular 
energy )(tEs , which is determined by equation 6. 
Second component is diffuse energy )(tEd , which 
is formed by scattered energy. The initial sound 
field is defined only by specular energy, diffuse 
energy is equal zero. At every reflection the 
fraction  of incident energy transforms into 
diffuse energy from specular energy. Absorption 
of diffuse energy is described by ordinary 
exponential law, which is correct for diffuse sound 
field. Suppose that diffuse energy decays in 
accordance with the Sabine’s law given by 
equation 11. 
If after any reflection from the wall with the 
number i  the wave with directional angles  and 

 has energy ),,(tEs  defined by previous 
specular reflections, then before this reflection 
specular energy is equal is tE ),,( . So 
scattered energy during this reflection is equal 

iis tE ),,( . At the time interval from t  to 
dtt  the number of reflection from each wall is 

equal dtni , where dtdnn ii . According to 
equations 3-5 in  does not depend on time. 

Increase in diffuse energy due to the wave with 
directional angles  and  is defined by all 
reflections in the time interval ),( dttt

dttEntdE s
i

i

i
id ),,(),(),,( .       (13) 

Total increase of diffuse energy is given by 
integration by all angles 

dtddn
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In accordance with the Sabine’s law diffuse 
energy decays as Tte , where cSVT 4 .
Reduction of diffuse energy at the time interval dt
is equal 

dt
T

tE
tdE d

d
)(

)( .               (15) 

From equations 14 and 15 we can find the 
differentioal equation for  diffuse energy 

2

0

2

2

),( ),( ddBe
T
E

dt
dE tAdd             (16) 

with the initial condition 

0)0(dE ,                (17) 
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Figure 2. Sound energy decays in the rectangular
enclosure with dimensions H : D : L=1:0.7:0.5 with one
absorbing wall (1), two absorbing walls (2), three
absorbing walls (3) in comparison with the Sabine’s
law (4).
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Solution of equations 16 and 17 is given by 
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Total sound energy in the enclosure is determined 
by a sum of equations 6 and 18 

)()()( tEtEtE ds .               (19) 

In order to find diffuse energy at t  we 
rewrite equation 9 for specular energy in the 
following way 
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and introduce values characterizing scattering 
properties of the walls 
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From equation 18 one can find at t
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Note that equation 21 is not correct if value T1  is 
close to l , d  or h . We can see from equation 21 
that diffuse energy strongly depends on specular 
energy. In order to diffuse energy prevails over 
specular energy it is required significant values of 

1l , 1d , 1h  and small absorption of diffuse field 
hdlT ,,1 .

In the enclosure with dimensions LDH ::
5.0:7.0:1  considered above suppose that only 

one wall ( 1i ) can absorb sound and its 
absorption and reflection coefficients are equal 

7.01 , 3.01 , 01 . Four walls scatter 
sound without absorption ( 06543 ,

43 65 ). The wall with the number 
2i  does not absorb and scatter sound, i.e. 

12 . Figure 3 shows results of calculation of 
specular energy )(tEs  defined by equation 6, 
diffuse energy )(tEd  defined by equation 18 and 
total energy )(tE  defined by equation 19 for four 
values of the diffuse reflection coefficient 

2.0,1.0,05.0,0 . With increasing of 
scattering on the walls diffuse energy increases in 
relation to specular energy and the decay rate of 
total energy increases as well. If the diffuse 
reflection coefficient is great enough ( 2.0 )
diffuse energy dominates and the sound decay law 
tends to the Sabines’s law. When scattering on the 
walls is small ( 05.0 ) total energy is defined 
only by specular energy and sound scattering is 
equivalent to sound absorption. 
We see in Figure 3 specular energy and diffuse 
energy are approximately equal at 1.0 . Let us 
estimate value of the diffuse reflection coefficient 
which provides the similar decay law for both 
energies, i.e. )(~)( tEtE ds  at t  in the 
considered enclosure with one absorbing wall and 
four scattering walls perpendicular to absorbing 
one. The smallest exponential decay rate of 
specular energy components given by equation 20 
is Lcl 2ln 43 . Because of 143
the exponential decay rate of specular energy is 
equal Lcl  in case of small scattering 1.
The exponential decay rate of diffuse energy is 
characterized by cSVT 4 . In case of 

DLH ~~  we can estimate 3~ LV  and 26~ LS .
So cLT ~
Specular and diffuse energies are approximately 
equal if their exponential decay rates are 
approximatly equal as well Tl 1~ . Substituting 
here estimations for l  and T  we can find the 
following condition 

~ .                (23) 

Equation (23) allows estimating the diffuse 
reflection coefficient essential for significant 
sound field diffusion in the enclosure. For 
example in a room with an absorbing ceiling 1
diffuse energy is significant in comparison with 
specular energy if the diffuse reflection coefficient 
of walls is equal or greater then 0.1-0.2. 
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4. Conclusions

An analytical model of sound decay in a 
rectangular enclosure is proposed. In the model 
energy of speculary reflected sound and energy of 
sound scattered by enclosure walls are calculated 
separately. Decay of specular energy is 
nonexponential under any absorption distribution. 
Taking into account the scattering properties of 
walls permits to achieve an exponential decay law. 
It is shown that under nonuniform absorption 
distribution diffuse energy is significant if the 
diffuse reflection coefficient of the walls is close 
to the average absorption coefficient. 
Application of the reverberation time is correct 
only for exponential decays. Whereas sound decay 
in a rectangular enclosure with specular reflecting 
walls is not exponential. So it seems that 
reverberation time formulas using only absorption 
coefficients are unjustified in calculation for 

rectangular enclosures and possibly for the 
enclosures with a poor randomizing strength. 
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Figure 3. Decays of specular energy, diffuse energy and total energy in the rectangular enclosure with one absorbing 
wall and four scattering walls for different values of the diffuse reflection coefficient .
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