МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное

учреждение высшего образования

«НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Управление научных исследований, инноваций и проектных работ

УТВЕРЖДАЮ:

Проректор по научной работе

и.С. Соболь медбря 2020 г.

OTYET No 2017/01/08 по работе

«Научные исследования звукоизоляционных и звукопоглощающих свойств акустических материалов, изделий и конструкций» Этап №2

Договор №2017/01 от 03 марта 2017 г

Начальник УНИИПР

Д.В. Монич

СПИСОК ИСПОЛНИТЕЛЕЙ

Профессор кафедры архитектуры, к.т.н.

Д.В. Монич

Начальник УНИЦ «Строительные конструкции»,

доцент кафедры архитектуры, к.т.н.

П.А. Гребнев

СОДЕРЖАНИЕ

		Стр
1.	Состояние вопроса	4
2.	Методика проведения исследований	5
3.	Определение индекса звукопоглощения	9
4.	Выводы по работе	14
	Список использованных источников	15
	Приложение. Фотофиксация исследуемых образцов	16

1. Состояние вопроса

В соответствии с договором № 2017/01 от 03.03.2017 г. между ООО «Акустик Групп» (Заказчик) и ННГАСУ (Исполнитель) выполнены лабораторные экспериментальные исследования звукопоглощающих свойств 4 (четырёх) типов звукопоглощающих конструкций. Измерения проведены в исследовательской экспериментальной установке «Реверберационные акустические камеры» ННГАСУ (Большие акустические камеры). Аттестат №10/340/1440 от 13.09.2019 г., выдан ФГУП «Всероссийский научно-исследовательский институт физикотехнических и радиотехнических измерений» (ВНИИФТРИ).

Описание исследуемых типов конструкций приведено в таблице 1.

В результате проведенных экспериментальных исследований были получены частотные характеристики звукопоглощения 4 (четырех) типов звукопоглощающих конструкций, на основании которых для них были определены индексы звукопоглощения и класс звукопоглощения.

Таблица 1 Спецификация исследуемых конструкций

По-	
рядко-	Краткое описание исследуемых конструкций
вый	
номер	
1	Шуманет Термо PRO толщиной 9 мм, уложенный фольгой вверх по кладочным сеткам на каркасе из деревянного бруса толщиной 40 мм. Площадь образца 14 м ² : длина
	3,6 м, ширина 3,9 м.
	3,0 м, ширина 3,9 м.
2.	Шуманет Термо PRO толщиной 9 мм, уложенный фольгой вниз по кладочным сеткам
2	на каркасе из деревянного бруса толщиной 40 мм. Площадь образца 14 м ² : длина 3,6 м, ширина 3,9 м.
3	Шуманет Термо толщиной 9 мм, уложенный по кладочным сеткам на каркасе из деревянного бруса толщиной 40 мм. Площадь образца 14 м ² : длина 3,6 м, ширина 3,9 м.
4	Шуманет Термо толщиной 9 мм, уложенный на полу «волнами» (длина «волны» около 5 см). Площадь образца 14 м^2 : длина $3,6 \text{ м}$, ширина $3,9 \text{ м}$.

2. Методика проведения исследований

Определение реверберационного коэффициента звукопоглощения образцов проведено в соответствии с методикой ГОСТ 31704-2011 «Материалы звукопоглощающие. Методы измерения звукопоглощения в реверберационной камере» [1]. Исследования проведены в исследовательской экспериментальной установке «Реверберационные акустические камеры» ННГАСУ (Большие акустические камеры): в реверберационной камере объемом 250 м³, пригодной для воспроизведения нормированных условий испытаний с целью определения коэффициентов звукопоглощения материалов и изделий в соответствии с ГОСТ 31704-2011 (аттестат первичной аттестации № 10/340/1440, выданный ФГУП ВНИИФТРИ, дата выдачи 13 сентября 2019).

План и разрез измерительной реверберационной камеры, а также схема расположения в ней громкоговорителей и рассеивателей приведена на рисунках 1 и 2.

Для измерений использовалась прецизионная акустическая измерительная аппаратура. Для измерения времени реверберации применялся шумомеранализатор спектра: двухканальный прецизионный интегрирующий «Larson Davis» типа 2900В, заводской №1089 с капсюлями микрофона типа 2559, заводской №2879 и №2832, предусилителем типа КММ 400, заводской №01154 и №01179 (свидетельство о поверке № 19009098728 от 21.10.2020 г., выданное ФБУ «Государственный региональный центр стандартизации, метрологии и испытаний в Нижегородской области», действительно до 20.10.2021 г.).

Перед проведением измерений и по их окончании выполнялась относительная калибровка приемного тракта с помощью калибратора акустического «Larson Davis» типа CAL 200 (регистрационный № 39217-08), заводской № 2975 (свидетельство о поверке № 19009098729 от 21.10.2020 г., выданное ФБУ «Государственный региональный центр стандартизации, метрологии и испытаний в Нижегородской области», действительно до 20.10.2021 г.).

Для генерации сигнала использовался встроенный генератор белого шума шумомера-анализатора спектра «Larson Davis» 2900В, сигнал подавался на усилитель мощности и далее – на систему электроакустических излучателей.

Измерения проводились в третьоктавных полосах частот, в диапазоне частот от $100~\Gamma$ ц до $5000~\Gamma$ ц.

Так как объем реверберационной камеры превышает 200 м³, то в соответствии с требованиями п 6.2.1.1 [1] площадь образца умножалась на коэффициент, определенный по формуле:

$$\left(\frac{V}{200\,\mathrm{M}^3}\right)^{\frac{2}{3}},\tag{1}$$

где V – объем реверберационной камеры, м³.

Таким образом, площадь образца: $1,16 \cdot 12 \text{ м}^2$, принята $14,0 \text{ м}^2$.

В соответствии с требованиями п. 6.2.1.2 [1] образец имел прямоугольную форму (3,6 м \times 3,9 м) с отношением ширины к длине 0,9. Образец устанавливался так, чтобы ни одна из его частей не находилась ближе 1 м от любой поверхности камеры. Грани образца не были параллельны ближайшей стене камеры. Обобщенная схема расположения образцов в реверберационной камере приведена на рисунке 3.

В момент проведения измерений температура в реверберационной камере составляла $23.5^{\circ}C$, относительная влажность воздуха – 35%.

До начала проведения измерений каждый образец находился в реверберационной камере в течение достаточного времени для достижения состояния равновесия с температурой и относительной влажностью воздуха в камере.

Измерения кривых спада звукового давления проведены методом прерываемого шума по методике ГОСТ [1].

Измерения для каждого образца проведены в 6 точках расположения микрофонов, находящихся на расстоянии не менее 1,5 м друг от друга, 2 м от любого источника шума и 1 м от любой поверхности камеры и образца, при двух положениях громкоговорителей (12 пространственно независимых измеренных кривых спада).

В качестве источника звука применялись громкоговорители, на которые подавался широкополосный шум.

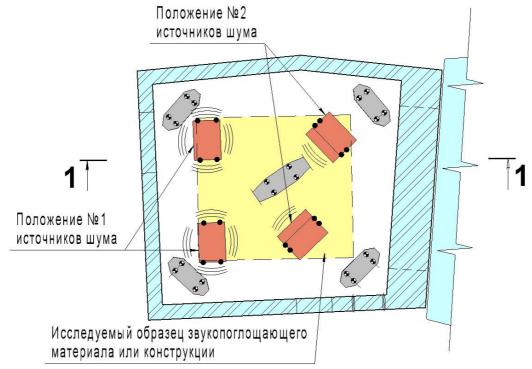


Рисунок 1 – Схема подвески звукорассеивающих элементов и звукоизлучающего оборудования в реверберационной камере (план)

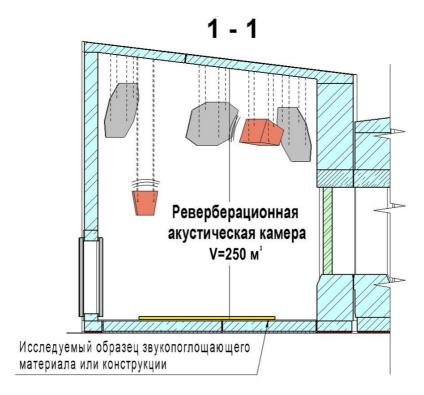


Рисунок 2 — Схема подвески звукорассеивающих элементов и звукоизлучающего оборудования в реверберационной камере (разрез)

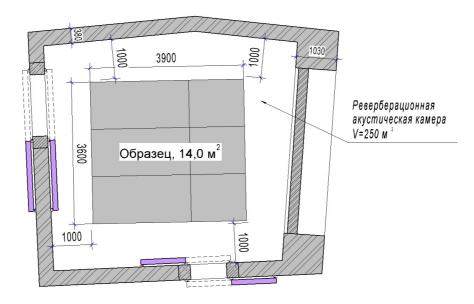


Рисунок 3 — Схема расположения исследуемых образцов в реверберационной камере (план)

Для создания стационарного режима время возбуждения при измерениях составляло не менее 1 минуты.

Уровень измерительного сигнала перед началом спада звукового давления превышал уровень фона не менее чем на 10 дБ на каждой среднегеометрической частоте рассматриваемого диапазона.

Образцы устанавливались в реверберационной камере в соответствии со схемой типа «А» (приложение В.2 [2]).

Результаты нескольких измерений, проведенных для одного образца, усреднялись для снижения неопределенности измерений, вызываемой статистическими отклонениями.

Фотофиксация исследуемых образцов приведена в приложении.

3. Определение индекса звукопоглощения

По результатам проведенных измерений для исследуемых образцов получены значения звукопоглощения в третьоктавных полосах частот в исследуемом частотном диапазоне от $100 \, \Gamma$ ц до $5000 \, \Gamma$ ц (см. таблицу 1), и построены частотные характеристики звукопоглощения, приведенные на рисунках 4-6.

На основании полученных коэффициентов звукопоглощения в третьоктавных полосах частот вычислены значения фактического коэффициента звукопоглощения в октавных полосах частот, как среднее арифметическое трех коэффициентов звукопоглощения, входящих в состав октавы, в соответствии с методикой ГОСТ [2]. Рассчитанные значения фактического коэффициента звукопоглощения исследованных образцов приведены в таблице 2 и на рисунках 7 – 9.

В соответствии с частотными характеристиками фактического коэффициента звукопоглощения для исследуемых конструкций (описание – см. табл. 1) определены индексы звукопоглощения и класс звукопоглощения по методике ГОСТ [2]:

- для конструкции №1: $\alpha_w = 0.50M$; класс звукопоглощения: D;
- для конструкции №2: $\alpha_w = 0.60MH$; класс звукопоглощения: С;
- для конструкции №3: $\alpha_w = 0.60MH$; класс звукопоглощения: C;
- для конструкции №4: $\alpha_w = 0.55MH$; класс звукопоглощения: D.

Значения коэффициентов звукопоглощения для исследуемых конструкций в третьоктавных полосах частот

Третьоктавные полосы со среднегеометрическими	Коэффициент звукопоглощения, α_s , дБ			
частотами, f , Γ ц	Конструкция №1	Конструкция №2	Конструкция №3	Конструкция №4
100	0,13	0,14	0,13	0,14
125	0,14	0,19	0,16	0,19
160	0,23	0,18	0,22	0,22
200	0,25	0,20	0,19	0,21
250	0,29	0,29	0,28	0,22
315	0,43	0,45	0,36	0,35
400	0,59	0,55	0,42	0,47
500	0,82	0,70	0,65	0,62
630	0,98	0,90	0,83	0,67
800	0,99	0,92	0,84	0,80
1000	0,87	0,90	0,97	0,80
1250	0,74	0,85	0,99	0,86
1600	0,63	0,78	1,04	0,89
2000	0,60	0,75	1,04	0,90
2500	0,50	0,79	0,93	0,93
3150	0,39	0,83	0,85	0,95
4000	0,34	0,93	0,94	0,94
5000	0,27	0,95	0,97	0,97

Значения фактических коэффициентов звукопоглощения для исследуемых конструкций в октавных полосах частот

Октавные полосы со среднегеометрическими частотами, f , Γ ц	Фактический коэффициент звукопоглощения, α_{ρ} , дБ			
	Конструкция №1	Конструкция №2	Конструкция №3	Конструкция №4
125	0,15	0,15	0,15	0,20
250	0,30	0,30	0,30	0,25
500	0,80	0,70	0,65	0,60
1000	0,85	0,90	0,95	0,80
2000	0,60	0,75	1,00	0,90
4000	0,35	0,90	0,90	0,95

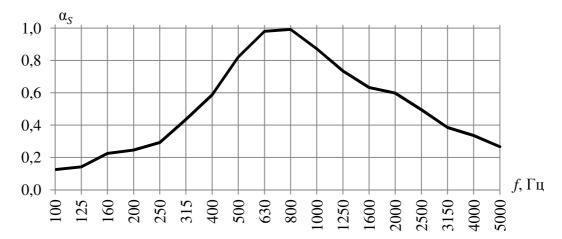


Рисунок 4 – Частотная характеристика коэффициента звукопоглощения конструкции №1

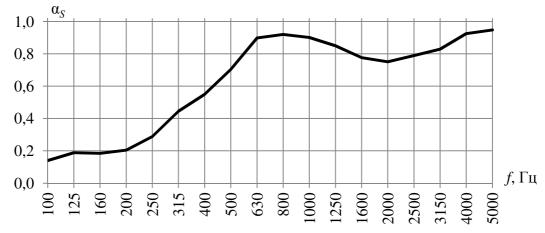


Рисунок 5 – Частотная характеристика коэффициента звукопоглощения конструкции №2

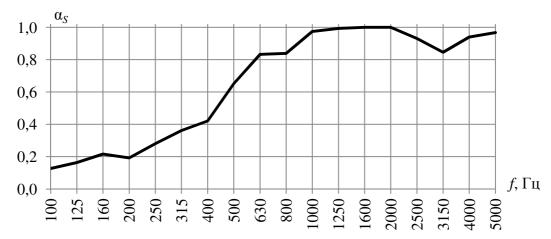


Рисунок 6 – Частотная характеристика коэффициента звукопоглощения конструкции №3

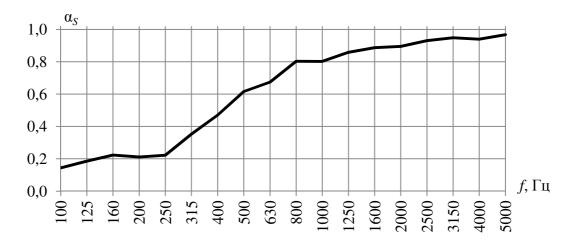


Рисунок 7 – Частотная характеристика коэффициента звукопоглощения конструкции №4

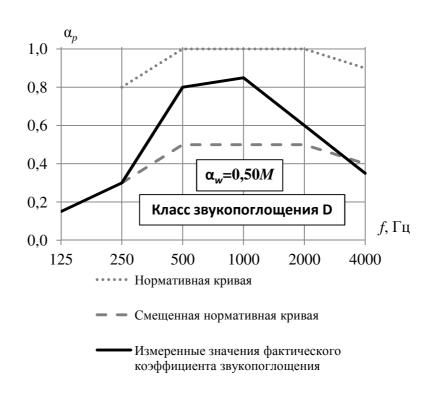


Рисунок 8 – Частотная характеристика фактического коэффициента звукопоглощения конструкции №1

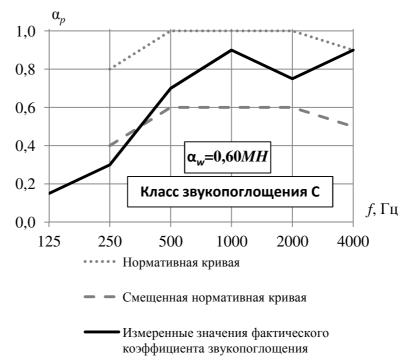


Рисунок 9 – Частотная характеристика фактического коэффициента звукопоглощения конструкции №2

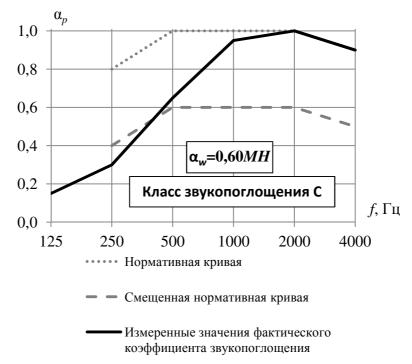


Рисунок 10 — Частотная характеристика фактического коэффициента звукопоглощения конструкции №3

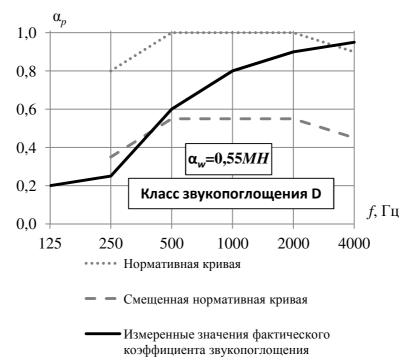


Рисунок 11 – Частотная характеристика фактического коэффициента звукопоглощения конструкции №4

4. Выводы по работе

- 1. В результате проведенных экспериментальных исследований по ГОСТ [1] получены частотные характеристики коэффициентов звукопоглощения 4 (четырех) типов конструкций в третьоктавных полосах частот в диапазоне от 100 Γ ц до 5000 Γ ц (см. рисунки 4 7).
- 2. На основании измеренных частотных характеристик коэффициентов звукопоглощения в третьоктавных полосах частот по методике ГОСТ [2] вычислены значения фактических коэффициентов звукопоглощения в октавных полосах частот в диапазоне от 125 Γ ц до 4000 Γ ц (см. рисунки 8 – 11).
- 3. В соответствии с частотными характеристиками фактических коэффициентов звукопоглощения по методике ГОСТ [2] определены индексы звукопоглощения и класс звукопоглощения 4 (четырех) типов конструкций:
 - для конструкции №1: $\alpha_w = 0.50M$; класс звукопоглощения: D;
 - для конструкции №2: $\alpha_w = 0.60MH$; класс звукопоглощения: C;
 - для конструкции №3: $\alpha_w = 0.60MH$; класс звукопоглощения: С;
 - для конструкции №4: $\alpha_w = 0.55MH$; класс звукопоглощения: D.

Краткое описание исследованных конструкций приведено в таблице 1.

Список использованных источников

- 1. ГОСТ 31704-2011 Материалы звукопоглощающие. Методы измерения звукопоглощения в реверберационной камере. М.: Стандартинформ, 2014
- 2. ГОСТ 31705-2011 Материалы звукопоглощающие, применяемые в зданиях. Оценка звукопоглощения. М.: Стандартинформ, 2013

Приложение. Фотофиксация исследуемых образцов

Рисунок 1 – Исследуемый образец №1, смонтированный на полу реверберационной камеры

Рисунок 2 – Исследуемый образец №2, смонтированный на полу реверберационной камеры

Рисунок 3 – Исследуемый образец №3, смонтированный на полу реверберационной камеры

Рисунок 3 – Исследуемый образец №4, смонтированный на полу реверберационной камеры